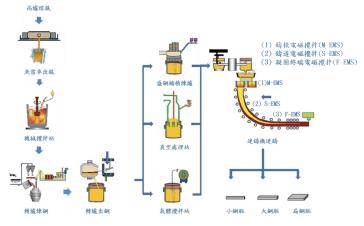
電磁攪拌在台塑河靜鋼鐵煉鋼製程之應用

河靜鋼鐵冶金技術部煉鋼品管處

一、前言

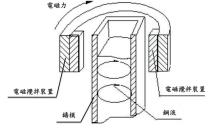
隨著連鑄技術的進步和發展,鋼胚的品質成為品管重點項目,因此如何提高鋼胚品質已是刻不容緩的課題。在鋼胚生產過程中,可能發生氣泡、夾渣、角裂、中心偏析和疏鬆等鋼胚缺陷。為解決上述問題,台塑河靜煉鋼廠在連鑄機上裝設電磁攪拌(Electromagnetic Stirrer, EMS)裝置,預期能夠發揮功效,獲得良好的品質和提升效果。

二、電磁攪拌的發展歷程


電磁攪拌技術的發展歷史可以追溯到 1920 年代,經多年開發演進,使得相關技術日趨成熟,時至今日國際大型鋼鐵公司仍然持續研究,在設備及製程等控制日益精進,因而配合開發出高品質之鋼鐵產品,表一為電磁攪拌技術各階段之發展歷程。

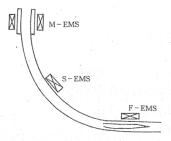
▼表一 電磁攪拌技術發展之里程碑

▼ 衣 电燃烧什役侧 按 校 ~ 主任 4				
年份	各國技術突破項目			
1922年	美國 Meneill J D 獲得了 EMS 控制凝固過程的專利			
1948年	瑞典 ASEA 公司製造出世界上第一台電磁攪拌器並用於電爐煉鋼			
1976年	扁鋼胚連鑄機鑄模電磁攪拌第一次用於德國的扁鋼胚連鑄機上			
1981年	NSC 提出了旋轉式結晶器電磁攪拌,減少針孔、氣孔、夾雜類等皮下缺陷			
1995年	日本神戶製鋼開發從鋼液分配器到鑄模間之電磁攪拌技術,解決 了長注嘴堵塞問題,並成功達成低過熱度澆鑄			
2008年	ABB 發明複合磁場凝固終端電磁攪拌技術			


三、電磁攪拌的作業流程

1. 一貫作業鋼鐵廠的煉鋼製程如圖一所示。煉鋼廠承接高爐產出的熔銑,在轉爐以氧氣吹煉除去雜質,經由二次精煉調整為合格化學成分,再經連鑄機澆鑄後凝固成為鋼胚半成品,然後送往軋延廠繼續生產為鋼鐵產品。而電磁攪拌就是裝設在連鑄機上,成為提升鋼胚品質的有效利器。

▲圖一 一貫作業煉鋼生產流程圖


- 2. 電磁攪拌是根據冶金製程要求,改變鋼胚凝固過程中鋼液的流場,從而提升鋼胚的品質。其優點在於"無接觸"和"無污染",使得電磁攪拌在操作過程中,具有複雜性和專業性。在實際生產中,電磁攪拌的冶金效果受許多因素的影響,包括鋼液過熱度、澆速、攪拌位置、攪拌強度和鋼種等,且依裝置位置的不同,而發揮不同的效果。
- 3. 電磁攪拌原理示意圖如圖二。電磁攪拌就是借助電磁力的作用,強化鋼胚液相中鋼液的流動,改變鋼液凝固過程中的流場、熱傳和導引,進而達到提升鋼胚品質的目的。

▲圖二 電磁攪拌原理示意圖

四、電磁攪拌之分類

用於連鑄機上的電磁攪拌裝置,依安裝部位可分為鑄模電磁攪拌裝置(M-EMS);鑄道電磁攪拌裝置(S-EMS)及凝固終端電磁攪拌裝置(F-EMS),詳細位置如圖三所示。

▲圖三 電磁攪拌線圈安裝位置示意圖

目前河靜鋼鐵所使用的電磁攪拌分別安裝在大小鋼胚的連鑄機上,大鋼胚連鑄機使用的是鑄模電磁攪拌 (M-EMS): 小鋼胚連鑄機使用為鑄模電磁攪拌 (M-EMS) 及凝固終端電磁攪拌 (F-EMS)。各種電磁攪拌之特點比較表如表二。

▼表二 各種電磁攪拌型式特點比較

	鑄模電磁攪拌 (M-EMS)	鑄道電磁攪拌 (S-EMS)	凝固終端電磁攪 拌 (F-EMS)
位置	鑄模	鑄模以下,凝固 終端以上之鑄道 區	凝固終端
類型	旋轉或三相	旋轉或線性	旋轉或三相
電磁特性	低頻、高功率、 可裝置於鑄模內 或鑄模外	電網頻率、低功率	小斷面用電網頻 率,大斷面用低 頻、高功率
功能	提高澆鑄速度, 提升鋼胚表面及 內部品質	提升鋼胚內部品 質	降低高碳鋼和高 合金鋼的中心偏 析
建置費用	高	低	高

五、電磁攪拌作業對冶金品質的影響

河靜鋼鐵採用電磁攪拌作業後,對鋼胚品質特性提高作 用如下:

1. 調整鋼胚金相組織

電磁攪拌可以促進鋼液的流動,改變柱狀晶的生長方

向,造成凝固組織發生改變。可提高鋼胚等軸晶率約 15~20%,使得鋼胚晶粒呈現細小且均勻。

2. 減少氣泡之殘留

在鋼胚凝殼及表面易形成氣泡和針孔,造成後續軋延之 表面缺陷。利用電磁攪拌可以使殘留氣體之發生率大為 降低。

3. 化學成分之均匀化

鋼液的流動及冷卻對成分均勻性造成影響,採用電磁攪拌,可對鋼液成分發揮均勻化效果,避免偏析(Segregation)現象。

4. 機械性能

電磁攪拌具有降低鋼胚應力集中效果,使得鋼胚易於後續之加工軋延,而達成最終成品良好之機械性質。

六、結語

無缺陷的鋼胚是現代鋼鐵業努力的目標。採用合適的電磁攪拌裝置可以使連鑄製程更加穩定,避免漏鋼發生,並可提高鋼胚澆鑄速度、增加合格鋼胚產量。電磁攪拌作業是台塑河靜鋼鐵擠身國際一流鋼廠的重要利器,對提高鋼胚的品質,增強產品競爭力扮演非常重要的角色。